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Background: Traffic Prediction

« Traffic Prediction
o  Forecasting future human flows, traffic speeds, travel demands, etc.

Traffic speed:

Traffic flow:
How many cars passed
the intersection?

What is the average
speed of this lane?

Travel demand:
How many taxis stopped
for passengers?




Background: Traffic Prediction

o Iraffic Prediction

o  Forecasting future human flows, traffic speeds, travel demands, etc.
o Foundations for smart transportation tasks, e.g. route planning, vehicle dispatching

Traffic flow: Traffic speed:

How many cars passed
the intersection?

What is the average
speed of this lane?

Travel demand:
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Background: Deep Learning for Traffic Prediction

« Deep learning models achieve success in traffic prediction.
o e.g. CNN [Zhang et al. 2017], RNN [Yao et al. 2019b], GCN [Li et al. 2018],
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Example: CNN-based models
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///:/J “ ' * Deep CNN models to learn
mr alt ........... [ ......... spatio-temporal features.

time

o Drawback: Require large-scale traffic data (e.g. a year)
o Question: What if we only have limited data?
s e.g. Under-developed cities.




Background: Transfer Learning for Traffic Prediction

« Cross-city transfer learning for traffic prediction:

o Transfers knowledge from data-rich cities to data-scarce cities.
o Examples: RegionTrans [Wang et al. 2019], MetaST [Yao et al. 2019a]
o Main Methods: Fine-tuning
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Background: Fine-Tuning Solutions

« Example: RegionTrans [Wang et. al, 2019]
o Step 1: Finding similar cross-city region pairs.
o Step 2 (Source Training): Train the model on abundant data from source city.
o Step 3 (Fine-Tuning): Fine-tune the model with target data & region similarity.
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Motivation

« Common drawback of fine-tuning-based methods:

o  Focus on designing novel fine-tuning methods.
o lgnore the impact of source training: may learn irrelevant source knowledge.

« Our observation:
o Inadequate source training is harmful.



Motivation: Experiments

6.37% 4.4
e Source (left)

| === Target (right)

« Real-world taxi data 4.3
o  Source City: Chicago;
Target City: Washington DC (7 days) 4-2
.. 5.9 , : : :
« Vary number of epochs for source training. 2 ource Training Epoch

- Results: (a) Supervised Source Training
o More source training
=> Lower source error
=> Higher target error.
o Source training learns harmful knowledge!



Problem Definition

« Goal: Selective Transfer Learning
o Select relevant knowledge, rule out harmful knowledge.
« How?
o Common Practice: Divide cities to regions [Wang et al. 2019]
o  We select knowledge by re-weighting regions.
o Advantages:
= Better transfer learning performance.
= Better interpretability (by visualization).
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Problem Definition

« When?
o Selective Source Training:
Source knowledge is learned during source training, not fine-tuning.
« Problem Definition:

o For each region rs in the source city S, learn weights 4, > 0, such that after

1. Source training with weights 4, > 0, and
2. Target fine-tuning,
error on the target city iIs minimized.
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Proposed Work

« CrossTReS (Cross-City Transfer Learning with Region Selection)
o General framework for selective source training.
o Agnostic to fine-tuning methods.
o Up to 8% error reduction on real-world taxi and bike datasets.
o Interpretable cross-city knowledge transfer.
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Main Ideas

« Idea 1: Regional urban features shed light on traffic patterns.
o e.g. Industrial areas = morning and evening rush hours
Business centers =2 traffic flows peak during weekends

o  Cross-city regions with similar features = similar traffic patterns.

o Challenge 1: How to learn generalizable region features in both cities?
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Main Ideas

« Idea 2: ‘Helpful’ source regions should be assigned high weights, and vice

Versa.
o e.g. Target city enjoys smooth traffic flows = Source regions with heavy congestion
should be given low weights.

o Challenge 2: How to quantify such ‘helpfulness’ ?

14



Components

« Feature network Fgfi Graph-based models to learn region features

« Weighting network Fg_ : Learns weights A, for source regions
« Prediction model Fy : Performs traffic prediction.
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Learning Generalizable Region Features

Regional Feature Learning
o  Common Practice: Build multi-view graphs

within a city [Zhang et al. 2020]
m  Nodes (regions) linked by various relations, e.g.
similar POI, similar human mobility, road
connections, etc.

o  City-specific: only reflects intra-city relations.

Generalizable Region Feature Learning
o  Goal: Similar regions across cities have similar
features.
o How?
m Node and edge-level domain adaptation
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Learning Generalizable Region Features

« Node-level:

O

O

Maximum mean discrepancy (MMD)
Aligns distribution of node features.

« Edge-level:

O

Intuition: Use edge types to link cities.
1.

2.

Different types of edges =»
separable edge features.

Different cities, same edge types =

similar edge features

Method: Shared edge classifier.
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Learning Generalizable Region Features

« Edge classifier Fgedge:

O

Input: edge features

(concat. of node features)

Predict: edge type

(Intuition 1)

Shared between source & target cities
(Intuition 2)
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Quantifying Helpfulness of Source Regions

Intuition: e .
! Outer Loop: Backpropagate to 8y, 6¢ to learn region weights 4. !
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Overall Algorithm

Algorithm 1 Selective Cross-City Transfer Learning for Traffic
Prediction with CrossTReS

e Source Tralnlng (LlneS 2_8): Input: Source and target traffic data X g, X7,
o Traln feature and Welghtlng network Multi-view urban data {gvc},v € {prox, road,poi, s,d},C € {S, 7-},
_ _ _ Output: A deep prediction model 04 for 7
to adJUSt WelghtS (LlﬂeS 3_4) 1: Set s_epoch = 0, tune_epoch = 0. Region Feature
o Selectively train on source data (Line 5-6). 2 whiles_epoch <T do Learning
3:  Train feature network 6y via Eqn. 11 :

Train 65 = {6, 6} via Eqn. 12, 13, and 144 JOL'”t Meta-
Obtain source weights A,. carning

e Fine-tuning (Lines 9-12)
o Agnostic to fine-tuning methods, e.g.
Nalve fine-tuning, RegionTrans, etc.

Train 6 on source data Xg via Eqn. 5 with weights A,.
s_epoch = s_epoch + 1.

end while

while tune_epoch < Tyyne do

10:  Train model 0 on target data X

11:  tune_epoch = tune_epoch + 1.

12: end while

13: return Trained model 6+

e R T
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Experiments

« Datasets: Taxi & Bike data, pickup & dropoff

« Source Cities: New York (NY), Chicago (CHI)
Target City: Washington (DC)

« Base Model: ST-Net [Yao et al. 2019Db]

« Data Amount:
o Source: 1 year; Target: 30, 7, 3 days

« Result Highlights:

o Up to 8% error reduction compared to SOTA baselines.
o Good compatibility with general fine-tuning methods.

o Source region weights 4, provide interpretable visualizations.
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Quantitative Results: Bike

Target Data

Sg"uerf:';"gi{y NY CHI NY CHI NY CHI
ARIMA 3.44 3.46 3.48
ST-Net 2.49 2.73 3.14

Best Transfer 2.293 2.339 2.453 2.529 2.535 2.653

CrossTReS 2.187 2,244 2.300 2.349 2,397 2.449

CrossTReS-RT | 2.177 2.211 2315 2,315 2.377 2.419
CrossTReS-Mem |  2.179 2.231 2.299 2.313 2,391 2.414

CrossTReS-RT and —Mem use RegionTrans and STMem [Yao et al. 2019] for fine-tuning.

Metric: RMSE.
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Quantitative Results: Taxi

Target Data

Sg"uerf:';"gi{y NY CHI NY CHI NY CHI
ARIMA 5.18 5.19 5.20
ST-Net 4.85 5.74 6.83

Best Transfer 4.097 4.077 4411 4347 4672 4544

CrossTReS 3.885 3.869 4.056 4.031 4.326 4271

CrossTReS-RT | 3.880 3.867 4.052 4.064 4230 4.235
CrossTReS-Mem 3.883 3.873 4.053 4.048 4.211 4.241

CrossTReS reduces error by up to 8%.
CrossTReS is compatible with general fine-tuning methods, e.g. —RT, -Mem.




Model Analysis: Region Feature Learning
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Figure 3: Analysis results on node- and edge-level domain adaptations for spatial feature learning.

« With learned region features and domain adaptation, CrossTReS achieves the best results.

e Removing either level of domain adaptation (1 = 0 or f, = 0) leads to larger error.
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Model Analysis: Joint Meta-Learning

Removing the weighting network 6,
leads to larger error.

The additional simulation of target
fine-tuning (Kt = 1) leads to better

knowledge transfer.
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Figure 4: Analysis results on the joint meta-learning for re-
gion re-weighting.
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Case Study: Visualization

« For the NY-DC transfer learning task,

A Bronx

CrossTReS selects Manhattan over A /Q
s B p SN
Bronx, Queens, and Brooklyn. ! TRSA, odee
Broo@n >

« Indeed, DC is most similar to Manhattan:
> High economic development. (&) Map of NY (b) Visualization of A,
o Popular tourist destinations.

Figure 6: Visualization of source region weights A, over NY.
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Conclusion

« CrossTReS: selective transfer learning for traffic prediction.
Selects helpful source regions to iImprove target fine-tuning.

O

o Learns generalizable region features via bi-level domain adaptation.
o Re-weights source regions via joint meta-learning.

o Achileves up to 8% error reduction and interpretable visualization on real-
world data.
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