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Abstract

It is not until recently that graph neural networks (GNNs)
are adopted to perform graph representation learning, among
which, those based on the aggregation of features within the
neighborhood of a node achieved great success. However, de-
spite such achievements, GNNs illustrate defects in identify-
ing some common structural patterns which, unfortunately,
play significant roles in various network phenomena. In this
paper, we propose GraLSP, a GNN framework which explic-
itly incorporates local structural patterns into the neighbor-
hood aggregation through random anonymous walks. Specif-
ically, we capture local graph structures via random anony-
mous walks, powerful and flexible tools that represent struc-
tural patterns. The walks are then fed into the feature aggre-
gation, where we design various mechanisms to address the
impact of structural features, including adaptive receptive ra-
dius, attention and amplification. In addition, we design ob-
jectives that capture similarities between structures and are
optimized jointly with node proximity objectives. With the
adequate leverage of structural patterns, our model is able
to outperform competitive counterparts in various prediction
tasks in multiple datasets.

1 Introduction

Graphs are ubiquitous due to their accurate depiction of rela-
tional data. Graph representation learning (Cui et al. 2018),
in order to alleviate sparsity and irregularity of graphs, came
into life, projecting nodes to vector spaces while preserving
graph properties. Vector spaces being regular, graph repre-
sentation learning hence serves as a versatile tool by accom-
modating numerous prediction tasks on graphs.

More recently, success in extending deep learning to
graphs brought about Graph Neural Networks (GNNs)
(Zhou et al. 2018) and achieved impressive performances.
Many GNNs follow a recursive scheme called neighbor-
hood aggregation, where the representation vectors of nodes
are computed via aggregating and transforming the features
within their neighborhoods. By doing so, a computation
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tree is constructed which is computed in a bottom-up man-
ner. Being powerful yet efficient, neighborhood aggregation
based GNNs! have hence attracted the attention of numerous
research works (Xu et al. 2018; Liu et al. 2019).

In addition to node-level features which GNNs aggregate,
features of other scales also prevail in graphs, among which,
structural patterns of varying scales recurring frequently are
typical and indicative of node and graph properties, such as
functions in molecular networks (Przulj 2007), pattern of in-
formation flow (Granovetter (1977), Paranjape (2017)), and
social phenomena (Kovanen et al. 2013), which are often
global insights which node-level features fail to provide.

Yet, although GNNs do encode neighborhoods of nodes
(Xu et al. 2018), they are not ensured to generate distinctive
results for nodes with different structural patterns. Specifi-
cally, distinctions between local structural patterns are mi-
nuscule, one or two links for example, which makes it hard
for GNNs to generate distinctive embeddings for structural
patterns, even with wildly different semantics.

We take the triadic closures, patterns characteristic of
strong ties in social networks, as examples (Huang et al.
2015). We show the computation tree of a triadic closure
in a 2-layer GNN in Fig. 1. As can be shown, the only dif-
ference the triadic closure makes is the existence of first or-
der neighbors (green nodes) on the second layer of the tree,
whose impact tends to diminish as their neighborhood (red
nodes) expands. It is thus concluded that, based on neighbor-
hood aggregation, GNNs can, in some cases, fail to generate
distinctive embeddings for structural patterns that are topo-
logically similar but carry wildly different semantics.

Neighborhood
Aggregation

Twice

Graph

Computational Tree

Figure 1: Computational Tree of a Triadic Closure Graph

'Tn this paper we focus on GNNs based on neighborhood ag-
gregation, like (Xu et al. 2018), and leave other architectures for
future work.



As the counterpart of CNNs in images, we would consider
GNNSs to be capable of capturing graphical features of vary-
ing levels and scales, including both node and local, struc-
tural level. Hence, one question arises: how can we enable
GNNs to more adequately capture and leverage multi-scaled
structural and node features? One straightforward way is to
first measure the structural properties of each node and con-
catenate them with their node features as inputs. Yet easy as
it is, two challenges remain to be solved.

o Efficiency. Most metrics of measuring structural patterns
require enumeration and pattern matching, which would
often require very high complexity. For example, as one
widely adopted metric, it would take an O(|V|d*~1) time
complexity to compute the k-graphlet statistics (Sher-
vashidze et al. 2009) within a graph.

e Incorporation of structural properties. Challenges also
lie in the incorporation of such properties. On one hand,
structural features convey rich semantics that shed light
on graph properties, which cannot be captured by statis-
tics only. On the other hand, structural properties may in-
dicate roles of nodes in graphs and hence guide the aggre-
gation of features (Liu et al. 2019; Ying et al. 2018).

Consequently, to complement GNNs for better address-
ing these structural patterns, we propose Graph Neural Net-
work with Local Structural Patterns, abbreviated GraLSP, a
GNN framework incorporating local structural patterns into
the aggregation of neighbors. Specifically, we capture local
structural patterns via random anonymous walks, variants
of random walks that are able to capture local structures in
a general manner. The walks are then projected to vectors
to preserve their underlying structural semantics. We design
neighborhood aggregation schemes with multiple elaborate
techniques to reflect the impact of structures on feature ag-
gregation. In addition, we propose objectives to jointly opti-
mize the vectors for walks and nodes based on their pairwise
proximity. Extensive experiments show that due to our elab-
orate incorporation of structural patterns, our model outper-
forms competitive counterparts in various tasks.

To summarize, we make the following contributions.

e We analyze the neighborhood aggregation scheme and
conclude that common GNNs suffer from defects in iden-
tifying some common structural patterns.

e We propose that random walks can be used to capture
structural patterns with analyses on them.

e We propose a novel neighborhood aggregation scheme
that combines the structural and node properties through
adaptive receptive radius, attention and amplification.

e We carry out extensive experiments with their results
showing that our model, incorporating structural patterns
into GNN:s, attains satisfactory performances.

2 Related Work

Graph Representation Learning (GRL). Transforming
discrete graphs to vectors, GRL has become popular for
tasks like link prediction (Chen et al. 2018), community de-
tection (Wang et al. 2017; Long et al. 2019) etc.
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There are generally two types of GRL methods, as defined
by different notions of node similarity. On one hand, meth-
ods like DeepWalk (2014) and GraphSAGE (2017) adopt
the notion of homophily, similarity defined by close con-
nections. On the other hand, methods like struc2vec (2017)
and Graphwave (2018) define similarity as possessing simi-
lar topological structures. It should be noticed that although
our method captures structural patterns, it, like most GNNss,
falls into the former type, adopting the idea of homophily in-
stead of structural similarity. We will demonstrate more on
the two notions of node similarity in the experiments.
Graph Neural Networks (GNNs). GNNs (Scarselli (2008),
Bruna (2013), Niepert (2016), Kipf (2016)) gradually gain
tremendous popularity in recent years. Recent researchers
generally adopt the method of neighborhood aggregation,
i.e. merging node features within neighborhoods to repre-
sent central nodes (Hamilton (2017)).

Identifying the connection between GNNs and graph
structures have also been popular. (Xu et al. 2018) and
(Morris et al. 2019) demonstrated the equivalence between
GNNs and the 1-WL isomorphism test. (Li, Han, and Wu
2018) showed the connection between GNN and Laplacian
smoothing. Compared to previous works, our work focus
more on “local” structures while (Xu et al. 2018) focus more
on global graph structures, e.g. graph isomorphism.
Measuring Structural Patterns. Previous works on mea-
suring structural patterns pay their attention on characteris-
tic structures including shortest paths and graphlets (Sher-
vashidze (2009), Borgwardt (2005)) etc. In addition, (Micali
and Zhu 2016) showed that it is possible to reconstruct a lo-
cal neighborhood via anonymous random walks on graphs,
a result surprising and inspiring to our model. Such notions
of anonymous walks are extended by (Ivanov and Burnaev
2018) who proposed graph embedding methods on them.

3 Model: GraL.SP

In this section we introduce the design of our model,
GralL.SP, with a brief overview illustrated in Fig. 2.

3.1 Preliminaries

We begin by introducing several backgrounds related to our
problem, including graph representation learning, random
and anonymous walks, and graph neural networks.

Definition 1 (Graph & Graph Representation Learning).
Given a graph G = (V, E), where V. = {v1, ...vjy|} is the
set of nodes and E = {(v;,v;)} is the set of edges, graph
representation learning learns a mapping function
f:V—-R?
Vi > hz
where d < |V'| with h; maintaining properties of node v;.

Specifically, GNNs characterize their mapping functions
to be iterative, where a node’s representation vector is com-
puted via aggregation of features within its neighborhood,
which can be summarized by the following equation

h'" = AGGREGATE ({hg’“*“,vj e N(v;) U {vi}}) .
(D
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Figure 2: Overview of our model, GraLLSP. For a certain node, we sample random anonymous walks around it. Anonymous
walks are projected to vectors which are then aggregated along a structurally aware neighborhood via attention and amplifica-
tion. The model is optimized via a joint loss of both structural and node proximity.

Many popular GNNs, including GCN and GraphSAGE
can be generalized by Eqn. 1 (Xu et al. 2018). We then
present the definition of random anonymous walks.

Definition 2 (Random Anonymous Walks (Micali and Zhu
2016)). Given a random walk w = (w1, wa, ..., w;) where
(wi, w;y1) € E, the anonymous walk for w is defined as

aw(w) = (DIS (w,w) , DIS (w, ws) , ...DIS (w, w;))

where DIS(w,w;) denotes the number of distinct nodes in
w when wj first appears in w, i.e.

DIS(w,w;) = [{w1, w2, ..wp}|, p = min;{w; = w;}.

We denote anonymous walks of length [ as w!,wh... ac-
cording to their lexicographical order. For example, w{
(1,2,1,2), w5 = (1,2,1,3),w; = (1,2,3,1), etc.

The key difference between anonymous walks and ran-
dom walks is that, anonymous walks depict the underlying
“patterns” of random walks, regardless of the exact nodes
visited. For example, both wy = (v1,v2,v3,v4,v2) and
wa = (vg,v1, U3, U4, 1) correspond to the same anonymous
walk aw(wy) = aw(wsa) = (1,2, 3,4, 2), even though wy
and w, visited different nodes.

3.2 Extracting Structural Patterns

We start by introducing our extraction of structural patterns
through anonymous walks. For each node v;, a set of -y ran-
dom walk sequences W) of length | are sampled. Alias
sampling is used such that the sampling complexity would
be O(~yV1). We then compute the empirical distribution of
their underlying anonymous walks as

Taonullwm =)

In addition, we take the mean empirical distribution over the
whole graph G as

ﬁ(wé v;)

|v;)
V] 7
as estimates of the true distribution p(w}|v;) and p(w!|G)
(Shervashidze et al. 2009).

VI a1
ﬁ(wé|G) — M 3)
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Rationale of Anonymous Walks There are works explor-
ing properties of anonymous walks. Micali (2016) showed
that one can reconstruct a local sub-graph using anonymous
walks. We present the theorem here.

Theorem 1. (Micali and Zhu 2016) Let B(v, 1) be the sub-
graph induced by all nodes w such that dist(v,u) < r and
D, be the distribution of anonymous walks of length | start-
ing from v, one can reconstruct B(v,r) using (D1, ...D;)
where l = 2(m+1) and m is the number of edges in B(v,r).

This theorem underscores the ability of anonymous walks
to capture structures in a highly general manner, in that they
capture the complete 7-hop neighborhood 2. Yet this theorem
is unrealistic considering representing structural patterns in
GNNs. For example, for the dataset Cora and r = 2, we get
[ = 118, which is impossible to deal with since the num-
ber of anonymous walks grows exponentially with [ (Ivanov
and Burnaev 2018). Instead, we propose an alternative that
is more suitable for our task.

Corollary 1. One can reconstruct B¢(v, r) with anonymous
walk of length | = O(m + r) where m is the number of
edges in an ego-network of G, if one can de-anonymize the
first v — 1 elements in each anonymous walk starting from v.

Corollary 2. Given that the graph follows power-law de-
gree distribution, the expected number of edges E[m] in an
ego-network of G would be
¢ cd d—2
=Yt () 1)
(1-3)d+ 5(a—2) \(mas)

where d, dp,qz, C denote average degree, maximum degree,
clustering coefficient of G respectively.

“4)

These corollaries show the rationale of using reasonably
long anonymous walks to depict general local structural pat-
terns. Specifically, for citation graphs including Cora, Cite-
seer and AMiner, Eqn. 2 evaluates to about 10. We omit the
detailed proofs due to space constraints.

2Although we do not explicitly reconstruct B(v, ), such the-
orem demonstrates the ability of anonymous walks to represent
structural properties.



In addition, we provide intuitive explanations of anony-
mous walks which we find appealing. Intuitively, an anony-
mous walk w with & distinct nodes induces a graph G, =
(Va, Ey) with V,, = {1,2...k} and (4, j) € E,, < (j,4) or
(7,4) C w. In this sense, a single anonymous walk is a par-
tial reconstruction of the underlying graph, which is able to
indicate certain structures, such as triads. We show the intu-
ition with walks on a triadic closure as an example in Fig. 3.

OO®O® B, ={(1,2),
QOGO — @EE®] 2y — A
PO (CR

Random Walks Anonymous Walk Graph

Figure 3: Example of anonymous walks on a triadic closure

3.3 Aggregation of Structural Patterns

In this section we introduce our incorporation of structural
patterns into the representation of nodes.

Representing Anonymous Walks Denoting anonymous
walks as statistics is insufficient as walks represent structural
patterns with varying similarities to each other. For example,
we would intuitively believe that (1,2, 3,1, 4) is highly sim-
ilarto (1,2, 3, 1, 2) as they both indicate an underlying triad,
but is dissimilar to (1,2, 3,4, 5) as no triads are indicated.

Consequently, as we would like to capture the properties
of varying walk sequences, we represent each anonymous
walk as a vector through an embedding table lookup

fe :wé—

(&)

—uj? € ]Rd/,
to capture the properties of varying walks and structures.

Neighborhood Aggregation In this part we introduce
how we aggregate structures along with node-level features.
Specifically, we focus on how to aggregate node features un-
der the impact of their local structural patterns, instead of
plainly aggregating them together using concatenation.
Intuitively, we consider structures to have the following
impacts on the aggregation of information on graphs:

e Defining Receptive Paths. Random walks can be seen as
receptive paths, showing how information flows over the
graph (Liu et al. 2019). Hence, we would like to define
flexible receptive paths, or “neighbors” of v according to
its random walks, instead of fixed 1-hop neighbors.

e Importance of Neighbors. Generally neighbors do not
exert impact uniformly but exhibit varying strength. It has
been studied that structures including cliques or dense
clusters generally indicate strong social impact (Gra-
novetter 1977), which should be captured by our model.

o Selective Gathering of Information. Structural patterns
may also characterize selection towards the information
to gather. For example, enzymes in biological networks
share distinctive structures such that selective catalysis to-
wards biological reactions is enabled (Ogata et al. 2000).
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To address the above impacts, we design our aggregation
formula as follows.

k k k _
al(, ) MEANWEW(“,ZJE[LT'W] ()\57‘2, (qgjvz, O] h‘(ﬂlfp 1)))

(6)
h") — ReLU (U<k)hgk—1> n V(k>agk)) k=12 K,
(N
K
h; = h{™), ®)

where w denotes a walk starting from v;, w,, denotes the
p-th node of walk w. ReLU(z) = max(0, z) is the ReLU

activation and MEAN(Q) = ZT&? “ is the mean pooling.
In addition, © denotes element-wise multiplication, while
Tw, Niow, > Qi,w, denote receptive radius of w, attention and
amplification coefficients, respectively, which we will intro-
duce in detail later that correspond to the above impacts.

Moreover, U(’“), V(*) denote trainable weight matrices.

Adaptive Receptive Radius While each random walk can
be seen as a receptive path, properties of the walk imply dif-
ferent radius of reception. For example, if a walk visits many
distinct nodes, it may span to nodes far away which may not
exert impact on the central node. On the other hand, a walk
visiting few distinct nodes indicates an underlying cluster
of nodes, which are all close to the central node. Hence,
we propose the adaptive receptive radius for neighborhood
sampling to address it. Specifically, the receptive radius of
a walk 7y, or “window size” is negatively correlated to its
21

span, i.e.
o me(aw(vv))J ’

where max(aw(w)) denotes the number of distinct nodes
visited by walk w. We build the neighborhood of v; such
that for each w € W® , only nodes within the radius 7, are
included, which forms an adaptive neighborhood of node v;.

€))

Attention We introduce the attention module (Velickovié
etal. 2017) to model varying importance of neighbors shown
by their structural patterns. Specifically, we model A; ,,, as
follows where the notations are defined as below Eqn. 8:

exp (P(k)uzx(w) + b(k))

AR
2w eXP (P<’€>ugg;(w,) + b(k))

;- (10)

where P(®) and b(*) are trainable parameters.

Amplification We introduce amplification module for
channel-wise amplification, or “gate”, to model the selective
aggregation of node features in the neighborhood. Formally,
we model q; ,,, similarly as:

(Q(’“)uié‘v’ w + r(k)) ,

where o(x) = 1/(1 4 exp(—=x)) is the sigmoid function to
control the scale of amplification, and Q*), r(*) are train-
able parameters.

(k)

qi,w =0

Y



3.4 Model Learning

In this section we introduce the objectives guiding the learn-
ing of our model. Specifically, we design a multi-task objec-
tive function to simultaneously preserve proximity between
both pairwise nodes but also pairwise walks.

Preserving Proximity of Walks Intuitively, if two anony-
mous walks both appear frequently within the same neigh-
borhood, they are supposed to depict similar structural in-
formation — the same neighborhood, and vise versa. Hence,
we design our walk proximity objective as follows,

min Lyqix = — Z IOgO' ((ugw)Tuzw - (u?w)Tung) )
v; €V
(12)

st p(wjlvi) > PWIG), Blwilvi) > Bwi|G)
Blonlvi) < B(w,|G)
such that highly co-appearing walks are mapped with similar
vectors. By constraining walk vectors in this way, we are
endowing walk vectors with semantics which can interpret

similarities, such that our operations of incorporating walk
vectors into aggregation are sound.

Preserving Proximity of Nodes An objective preserving
node proximity is required so as to preserve node properties.
We adopt the unsupervised objective of (Perozzi, Al-Rfou,
and Skiena 2014) but it does not rule out other objectives.

min Lyoge = — Z Z

vi€V v;EN (v5)
—KE,, ~p, (v [logo (hIh,)] } :

Overall Objective We combine the above two objectives
together by summing them up

[1og o (B7,)
(13)

(14)

to obtain a multi-task objective preserving both proximity
between pairwise walks and nodes. We adopt the Adam Op-
timizer to optimize the objective using TensorFlow.

min Loverall - Lnode + ,UfLwalk

4 Experiments

In this section we introduce our experimental evaluations on
our model GraL.SP.

4.1 Experimental Setup

We use the following datasets for the experiments. We take
nodes as papers, edges as citations, labels as research fields
and word vectors as features, if not specified elsewhere.

e Cora and Citeseer are citation datasets used in GCN

(Kipf (2016)). We reduce the feature dimensions from
about 2000 to 300 and 500 through PCA, respectively.

e AMiner is used in DANE (Zhang et al. 2019). We reduce
the feature dimensions from over 10000 to 1000.

e US-Airport is the dataset used in struc2vec (2017), where
nodes denote airports and labels correspond to activity
levels. We use one-hot encodings as features.
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Dataset V] |E| | Feature Dims | # Labels
Cora 2708 | 5429 300 7
Citeseer 3264 | 4591 500 6
AMiner 3121 | 7219 1000 4
US-Airport | 1190 | 13599 1190 4

Table 1: Dataset Statistics

We summarize the statistics of the datasets in Table 1.
We take the following novel approaches in representation
learning as baselines.

e Skip-gram models, including DeepWalk (2014) and
LINE (2015), which optimizes proximity between nodes.

e Structure models, focusing on topological similarity in-
stead of connections, including struc2vec and Graphwave.

e GNNs, including GraphSAGE, GCN and GAT. We use
unsupervised GraphSAGE with mean aggregator and
semi-supervised GCN, GAT with 6% labeled nodes.

As for parameter settings, we take 32-dimensional em-
beddings for all methods, and adopt Adam optimizer with
learning rate 0.005. For GNNs, we take 2-layer networks
with a hidden layer sized 100. For models involving skip-
gram optimization including DeepWalk, GraphSAGE and
GraLSP, we take v = 100, [ = 8, window size as 5 and
the number of negative sampling as 8. For models involving
neighborhood sampling, we take the number for sampling as
20. In addition, we take p = 0.1, and d’ = 30 for GraL.SP,
and keep the other parameters for the baselines as default.

4.2 Visualization as a Proof-of-Concept

We first carry out visualization on an artificial dataset G(n)
as a proof-of-concept, to test GNNs’ ability to identify lo-
cal structural patterns. We build G(n) from a circle with n
nodes, where each node is surrounded by either two open or
closed triads interleavingly. In addition, for each triad, there
are 4 addition nodes linked to it. Apparently the nodes on the
circle possess two distinct structural properties, those sur-
rounded by closed triads and those by open ones. We show
the illustration of G(n) and its building blocks in Fig. 4.

We visualize the representations from GraphSAGE and
GraLSP in Fig. 4. As shown, GraLSP generates a clearer
boundary between the two types of nodes, while Graph-
SAGE fails to draw a boundary as distinctive, which not
only demonstrates the inability of current GNNs in generat-
ing distinctive embeddings for different local structural pat-
terns, but also underscores the ability of anonymous walks
and GraLSP in complementing such drawbacks.

4.3 Node Classification

We carry out node classification on the four datasets. We
learn representation vectors using the whole graph, which
are then fed into Logistic Regression in Sklearn. We take
20% of all nodes as the test set and 80% as training. We take
the macro and micro F1-scores for evaluation. In addition,
all results are averaged for 10 independent experiments.



Cora Citeseer AMiner US-Airport
Macro-f1 Micro-f1 Macro-f1 Micro-f1 Macro-f1 Micro-f1 Macro-f1 Micro-f1
GraLSP 0.8412 0.8518 0.6458 0.7041 0.7092 0.6987 0.5882 0.5981
DeepWalk 0.7053 0.7305 0.3860 0.4540 0.6157 0.6128 0.5645 0.5723
LINE 0.5777 0.6044 0.3529 0.4021 0.5254 0.5628 0.5560 0.5672
Struc2Vec 0.2181 0.3675 0.2289 0.2907 0.2771 0.4682 0.6142 0.6285
Graphwave 0.0677 0.3105 0.1151 0.2469 0.1218 0.3213 0.5872 0.6128
GraphSAGE 0.8169 0.8294 0.6213 0.6837 0.6711 0.6603 0.5824 0.5941
GCN 0.8131 0.8236 0.6338 0.7032 0.6567 0.6391 0.0925 0.2269
GAT 0.8166 0.8304 0.6377 0.6993 0.6392 0.6321 0.4982 0.5092
Table 2: Macro-f1 and Micro-f1 scores of node classification on different datasets.
Cora Citeseer AMiner US-Airport
AUC Rec@0.5 AUC Rec@0.5 AUC Rec@0.5 AUC Rec@0.5
GraLSP 0.9465 0.8834 0.9577 0.8957 0.9659 0.9131 0.8103 0.7473
DeepWalk 0.8666 0.8055 0.8677 0.8022 0.9164 0.8525 0.7592 0.7232
LINE 0.8141 0.7664 0.8153 0.7512 0.8688 0.8170 0.9099 0.8209
Struc2Vec 0.6323 0.6022 0.7664 0.6497 0.6824 0.6269 0.7221 0.6571
Graphwave 0.2999 0.3652 0.3661 0.4123 0.2875 0.3577 0.5608 0.5434
GraphSAGE 0.9269 0.8542 0.9421 0.8776 0.9484 0.8892 0.8105 0.7435
GCN 0.8779 0.8022 0.8831 0.8048 0.8612 0.7725 0.7126 0.6662
GAT 0.8894 0.8031 0.8853 0.7956 0.8571 0.7559 0.7486 0.6933

Table 3: Results of link prediction on different datasets. Rec@0.5 denotes recall at 50%.
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Figure 4: Visualization on artificial graph G(100) where
black dots denote nodes surrounded by closed triads and
white ones denote those by open triads.

The results are shown in Table 2. As shown, the perfor-
mance gain from original GNNs towards GraLSP is con-
siderable, which demonstrates GraLSP is able to comple-
ment the drawbacks of identifying local structures. In addi-
tion, struc2vec and Graphwave perform poorly on academic
datasets, but impressively on US-Airport, which can be at-
tributed to the label definitions. In academic datasets, labels
are defined as fields, where connected papers tend to have
the same field and label, while in US-Airport, labels are
taken as activity levels with less significant homophily but
more related to structural properties. Nonetheless, we can
see that generally GraLSP produces satisfactory results.
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4.4 Link Prediction

We then carry out link prediction under the same settings.
We generate the test set by sampling 10% of the edges as
positive edges, which are removed during training, with an
identical number of random negative edges. For an edge
(1, 7), we take the inner product of their vectors hZT h;, which
will serve as the score for ranking. We take AUC and recall
at 50% (equal to the number of positive edges) as metrics.

The results are shown in Table 3. It can be shown that our
model is able to achieve gains compared to GCN, Graph-
SAGE and GAT, which should not be surprising given that
structural patterns will shed light on possible edges (Huang
et al. 2015), which are better captured by our model. Again,
it is not surprising that struc2vec and Graphwave fail to gen-
erate satisfactory performances in that they assign similar
representations to structurally similar nodes instead of con-
nected nodes. As for US-Airport dataset, it is likely that local
proximity is sufficient to reconstruct the graph, as shown by
all baselines except LINE fail to perform well.

4.5 Model Analysis

We carry out tests on our model itself, including parameter
analysis and scalability. Unless specified, we use node clas-
sification on Cora to reflect the performance of the model.
All parameters are fixed as mentioned except those tested.

Number of Walks Sampled We run GraLLSP with number
of walks per node v = 25, 50, 100, 200, and report their per-
formances in Fig. 5a. It can be shown that the more walks
sampled each node, the better the performance. Empirically,
as increasing y from 100 to 200 yields no significant gain,
we conclude that v = 100 is reasonable in practice.
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Figure 6: Visualization of representation vectors from various algorithms in 2D space

Length of Anonymous Walks As longer walks are con-
sidered, more complex structural patterns are incorporated.
We take [ = 5,6,7,8 and show the performances in Fig.
5b. As shown, performance improves along with [, with de-
creasing marginal gains. As the number of anonymous walks
grows exponentially with /, we conclude that [ = 8 would
be sufficient in balancing efficiency and performance.

Weight of Objective Functions We analyze the weight of
losses (1, which determines the trade-off between the multi-
task objective. We take 1 = 0,0.01,0.1,0.5,1, 5, and plot
the performances in Fig. 5c. It can be observed that starting
from p = 0, using only the objective in Eqn. 13, the perfor-
mance peaks at ;1 = 0.1, before taking a plunge afterwards.
We hence conclude that, the incorporation of our multi-task
objective does enhance the performance of the model.

Study of Aggregation Scheme We analyze our aggrega-
tion scheme to verify that it enhances the aggregation of fea-
tures. We compare our model with ordinary GraphSAGE,
along with another GraphSAGE with node features con-
catenated with the distribution of anonymous walks, which
proves to be a valid measure of structures (Ivanov (2018)).
We quote this variant as GraphSAGE-concat.

We show the results on Cora and Citeseer in Fig. 5d.
As shown, with node features concatenated with structural
features, the GraphSAGE-concat did not even outperform
GraphSAGE, which demonstrates that simply combining
them would compromise both. By comparison, our model
with adaptive receptive radius, attention and amplification
outperforms both GraphSAGE and GraphSAGE-concat.

Scalability We finally analyze the scalability of our
model. We run our model on Erdos-Renyi random graphs
Gryp with n = 100, 1000, 10000, 100000 and np = 6. We
tested the time needed for the preprocessing (i.e. sampling
random walks) and training to converge, which is defined by
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the loss not descending for 10 continuous iterations.

We plot the time needed with respect to the number of
nodes in log-log scale in Fig. 5e. As can be seen, both the
preprocessing and the training time are bounded by an O(n)
complexity, which endorses the scalability of our model.

4.6 Visualization on Real World Datasets

We finally carry out visualization on real world datasets to
qualitatively evaluate our model. We learn the representation
vectors on Cora, which are then reduced to 2-dimensional
vectors using PCA. We select three representative models:
DeepWalk (skip-gram), GraphSAGE (GNNs) and struc2vec
(structure models), along with our model to compare.

The plots are shown in Fig. 6, where yellow, green,
blue and red dots correspond to 4 labels within Cora. As
shown, struc2vec (Fig. 6b) illustrates no clusters as con-
nected nodes do not share similar representations. In addi-
tion, while DeepWalk (Fig. 6a), GraphSAGE (Fig. 6¢) and
GraLLSP (Fig. 6d) all illustrate clustering among nodes with
the same label, GraLSP generates clearer boundaries than
DeepWalk and GraphSAGE (between blue and red dots).

5 Conclusion

We present a GNN framework incorporating local structural
patterns to current GNNs, called GraLLSP. We start by ana-
lyzing drawbacks of current GNNss in identifying local struc-
tural patterns, like triads. We then show that anonymous
walks are effective alternatives in measuring local structural
patterns, and represent them with vectors, which are incor-
porated into neighborhood aggregation with multiple mod-
ules. In addition, we present a multi-task objective preserv-
ing proximity between both pairwise nodes and walks. By
adequately taking local structural patterns into account, our
method outperforms several competitive baselines.

For future work, we plan to extend this paper to GNNs
with more sophisticated architectures and more elaborate



representations of local structures. In addition, interpreta-
tions of structures in GNNs will definitely improve our in-
sight on various network phenomena.
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